3.2069 \(\int \frac{(2+3 x)^7 (3+5 x)}{(1-2 x)^{3/2}} \, dx\)

Optimal. Leaf size=118 \[ -\frac{729}{256} (1-2 x)^{15/2}+\frac{101331 (1-2 x)^{13/2}}{1664}-\frac{821583 (1-2 x)^{11/2}}{1408}+\frac{422919}{128} (1-2 x)^{9/2}-\frac{787185}{64} (1-2 x)^{7/2}+\frac{4084101}{128} (1-2 x)^{5/2}-\frac{7882483}{128} (1-2 x)^{3/2}+\frac{15647317}{128} \sqrt{1-2 x}+\frac{9058973}{256 \sqrt{1-2 x}} \]

[Out]

9058973/(256*Sqrt[1 - 2*x]) + (15647317*Sqrt[1 - 2*x])/128 - (7882483*(1 - 2*x)^(3/2))/128 + (4084101*(1 - 2*x
)^(5/2))/128 - (787185*(1 - 2*x)^(7/2))/64 + (422919*(1 - 2*x)^(9/2))/128 - (821583*(1 - 2*x)^(11/2))/1408 + (
101331*(1 - 2*x)^(13/2))/1664 - (729*(1 - 2*x)^(15/2))/256

________________________________________________________________________________________

Rubi [A]  time = 0.0199785, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.045, Rules used = {77} \[ -\frac{729}{256} (1-2 x)^{15/2}+\frac{101331 (1-2 x)^{13/2}}{1664}-\frac{821583 (1-2 x)^{11/2}}{1408}+\frac{422919}{128} (1-2 x)^{9/2}-\frac{787185}{64} (1-2 x)^{7/2}+\frac{4084101}{128} (1-2 x)^{5/2}-\frac{7882483}{128} (1-2 x)^{3/2}+\frac{15647317}{128} \sqrt{1-2 x}+\frac{9058973}{256 \sqrt{1-2 x}} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x)^7*(3 + 5*x))/(1 - 2*x)^(3/2),x]

[Out]

9058973/(256*Sqrt[1 - 2*x]) + (15647317*Sqrt[1 - 2*x])/128 - (7882483*(1 - 2*x)^(3/2))/128 + (4084101*(1 - 2*x
)^(5/2))/128 - (787185*(1 - 2*x)^(7/2))/64 + (422919*(1 - 2*x)^(9/2))/128 - (821583*(1 - 2*x)^(11/2))/1408 + (
101331*(1 - 2*x)^(13/2))/1664 - (729*(1 - 2*x)^(15/2))/256

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int \frac{(2+3 x)^7 (3+5 x)}{(1-2 x)^{3/2}} \, dx &=\int \left (\frac{9058973}{256 (1-2 x)^{3/2}}-\frac{15647317}{128 \sqrt{1-2 x}}+\frac{23647449}{128} \sqrt{1-2 x}-\frac{20420505}{128} (1-2 x)^{3/2}+\frac{5510295}{64} (1-2 x)^{5/2}-\frac{3806271}{128} (1-2 x)^{7/2}+\frac{821583}{128} (1-2 x)^{9/2}-\frac{101331}{128} (1-2 x)^{11/2}+\frac{10935}{256} (1-2 x)^{13/2}\right ) \, dx\\ &=\frac{9058973}{256 \sqrt{1-2 x}}+\frac{15647317}{128} \sqrt{1-2 x}-\frac{7882483}{128} (1-2 x)^{3/2}+\frac{4084101}{128} (1-2 x)^{5/2}-\frac{787185}{64} (1-2 x)^{7/2}+\frac{422919}{128} (1-2 x)^{9/2}-\frac{821583 (1-2 x)^{11/2}}{1408}+\frac{101331 (1-2 x)^{13/2}}{1664}-\frac{729}{256} (1-2 x)^{15/2}\\ \end{align*}

Mathematica [A]  time = 0.0225349, size = 53, normalized size = 0.45 \[ \frac{-104247 x^8-697653 x^7-2168775 x^6-4220622 x^5-5949090 x^4-6921432 x^3-8106616 x^2-16881328 x+16936240}{143 \sqrt{1-2 x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x)^7*(3 + 5*x))/(1 - 2*x)^(3/2),x]

[Out]

(16936240 - 16881328*x - 8106616*x^2 - 6921432*x^3 - 5949090*x^4 - 4220622*x^5 - 2168775*x^6 - 697653*x^7 - 10
4247*x^8)/(143*Sqrt[1 - 2*x])

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 50, normalized size = 0.4 \begin{align*} -{\frac{104247\,{x}^{8}+697653\,{x}^{7}+2168775\,{x}^{6}+4220622\,{x}^{5}+5949090\,{x}^{4}+6921432\,{x}^{3}+8106616\,{x}^{2}+16881328\,x-16936240}{143}{\frac{1}{\sqrt{1-2\,x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^7*(3+5*x)/(1-2*x)^(3/2),x)

[Out]

-1/143*(104247*x^8+697653*x^7+2168775*x^6+4220622*x^5+5949090*x^4+6921432*x^3+8106616*x^2+16881328*x-16936240)
/(1-2*x)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 2.29659, size = 111, normalized size = 0.94 \begin{align*} -\frac{729}{256} \,{\left (-2 \, x + 1\right )}^{\frac{15}{2}} + \frac{101331}{1664} \,{\left (-2 \, x + 1\right )}^{\frac{13}{2}} - \frac{821583}{1408} \,{\left (-2 \, x + 1\right )}^{\frac{11}{2}} + \frac{422919}{128} \,{\left (-2 \, x + 1\right )}^{\frac{9}{2}} - \frac{787185}{64} \,{\left (-2 \, x + 1\right )}^{\frac{7}{2}} + \frac{4084101}{128} \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} - \frac{7882483}{128} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{15647317}{128} \, \sqrt{-2 \, x + 1} + \frac{9058973}{256 \, \sqrt{-2 \, x + 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^7*(3+5*x)/(1-2*x)^(3/2),x, algorithm="maxima")

[Out]

-729/256*(-2*x + 1)^(15/2) + 101331/1664*(-2*x + 1)^(13/2) - 821583/1408*(-2*x + 1)^(11/2) + 422919/128*(-2*x
+ 1)^(9/2) - 787185/64*(-2*x + 1)^(7/2) + 4084101/128*(-2*x + 1)^(5/2) - 7882483/128*(-2*x + 1)^(3/2) + 156473
17/128*sqrt(-2*x + 1) + 9058973/256/sqrt(-2*x + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.57449, size = 205, normalized size = 1.74 \begin{align*} \frac{{\left (104247 \, x^{8} + 697653 \, x^{7} + 2168775 \, x^{6} + 4220622 \, x^{5} + 5949090 \, x^{4} + 6921432 \, x^{3} + 8106616 \, x^{2} + 16881328 \, x - 16936240\right )} \sqrt{-2 \, x + 1}}{143 \,{\left (2 \, x - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^7*(3+5*x)/(1-2*x)^(3/2),x, algorithm="fricas")

[Out]

1/143*(104247*x^8 + 697653*x^7 + 2168775*x^6 + 4220622*x^5 + 5949090*x^4 + 6921432*x^3 + 8106616*x^2 + 1688132
8*x - 16936240)*sqrt(-2*x + 1)/(2*x - 1)

________________________________________________________________________________________

Sympy [A]  time = 44.1016, size = 105, normalized size = 0.89 \begin{align*} - \frac{729 \left (1 - 2 x\right )^{\frac{15}{2}}}{256} + \frac{101331 \left (1 - 2 x\right )^{\frac{13}{2}}}{1664} - \frac{821583 \left (1 - 2 x\right )^{\frac{11}{2}}}{1408} + \frac{422919 \left (1 - 2 x\right )^{\frac{9}{2}}}{128} - \frac{787185 \left (1 - 2 x\right )^{\frac{7}{2}}}{64} + \frac{4084101 \left (1 - 2 x\right )^{\frac{5}{2}}}{128} - \frac{7882483 \left (1 - 2 x\right )^{\frac{3}{2}}}{128} + \frac{15647317 \sqrt{1 - 2 x}}{128} + \frac{9058973}{256 \sqrt{1 - 2 x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**7*(3+5*x)/(1-2*x)**(3/2),x)

[Out]

-729*(1 - 2*x)**(15/2)/256 + 101331*(1 - 2*x)**(13/2)/1664 - 821583*(1 - 2*x)**(11/2)/1408 + 422919*(1 - 2*x)*
*(9/2)/128 - 787185*(1 - 2*x)**(7/2)/64 + 4084101*(1 - 2*x)**(5/2)/128 - 7882483*(1 - 2*x)**(3/2)/128 + 156473
17*sqrt(1 - 2*x)/128 + 9058973/(256*sqrt(1 - 2*x))

________________________________________________________________________________________

Giac [A]  time = 2.01637, size = 167, normalized size = 1.42 \begin{align*} \frac{729}{256} \,{\left (2 \, x - 1\right )}^{7} \sqrt{-2 \, x + 1} + \frac{101331}{1664} \,{\left (2 \, x - 1\right )}^{6} \sqrt{-2 \, x + 1} + \frac{821583}{1408} \,{\left (2 \, x - 1\right )}^{5} \sqrt{-2 \, x + 1} + \frac{422919}{128} \,{\left (2 \, x - 1\right )}^{4} \sqrt{-2 \, x + 1} + \frac{787185}{64} \,{\left (2 \, x - 1\right )}^{3} \sqrt{-2 \, x + 1} + \frac{4084101}{128} \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} - \frac{7882483}{128} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{15647317}{128} \, \sqrt{-2 \, x + 1} + \frac{9058973}{256 \, \sqrt{-2 \, x + 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^7*(3+5*x)/(1-2*x)^(3/2),x, algorithm="giac")

[Out]

729/256*(2*x - 1)^7*sqrt(-2*x + 1) + 101331/1664*(2*x - 1)^6*sqrt(-2*x + 1) + 821583/1408*(2*x - 1)^5*sqrt(-2*
x + 1) + 422919/128*(2*x - 1)^4*sqrt(-2*x + 1) + 787185/64*(2*x - 1)^3*sqrt(-2*x + 1) + 4084101/128*(2*x - 1)^
2*sqrt(-2*x + 1) - 7882483/128*(-2*x + 1)^(3/2) + 15647317/128*sqrt(-2*x + 1) + 9058973/256/sqrt(-2*x + 1)